|
Résumé :
|
La dispersion dans les milieux poreux dans lequel un écoulement non-Darcéen dun nano?fluide a lieu, est étudiée par le biais dune modélisation adéquate se basant sur lapproche de Buongiorno, en accord aux mécanismes prépondérants de transport. Lapproximation dOberbeck Boussinesq pour une double diffusion, lextension de Darcy?Forchheimer et une relation de dépendance de la dispersion avec le champ des vitesses, ont été adoptés pour lécriture des équations de conservations de la masse, de la quantité de mouvement, de lénergie, de la concentration des espèces et des nanoparticules pour un régime de convection naturelle. Linteraction du nano-fluide avec une plaque verticale est matérialisée pour deux conditions thermiques, isotherme puis convective, et iso?concentration despèces, à la paroi. Une méthodologie de différences finies précises a été trouvée appropriée pour la résolution du système mathématique à valeurs aux limites adimensionné. La dispersion affecte fortement le transfert de masse et sensiblement moins le transfert thermique. Cet effet est négatif pour le premier transfert et satténue à mesure que le milieu est non-Darcéen, une paroi plus convective et la convection du nano-fluide plus vigoureuse. Il est par contre positif pour le transfert thermique mais dans des proportions moins grandes. Un nano-fluide avec des caractéristiques fortes présente des taux plus élevés par rapport à celui proche du fluide base.
|