|
Résumé :
|
Le transfert de chaleur de masse sur un coulement magn tohydrodynamique en convection naturelle d un fluide couple contrainte (fluide polaire), et en pr sence des nanoparticules, dans un canal vertical perm able, est tudi par le biais d une mod lisation ad quate, se basant sur l approche de Buongiorno dans le cas des nanofluide, en accord aux m canismes pr pond rants de transport. La premi re tape cerne la mod lisation de l coulement d un fluide couple contrainte classique avec l approximation de Boussinesq pour une double diffusion, l extension de Darcy-Forchheimer en pr sence de la diffusion crois e et de r action chimique pour un r gime de convection naturelle et magn tohydrodynamique pour une condition isothermique dans les deux plaques. En seconde tape, l approximation Boussinesq et non Boussinesq, l extension de DarcyForchheimer, ont t adopt s pour l criture des quations de conservations de la masse, de la quantit de mouvement, de l nergie, de la concentration des esp ces et de la concentration des nanoparticules pour un r gime de convection naturelle d un fluide couple contrainte contenant des nanoparticules, en prenant en consid ration le mouvement Brownien et la thermophor se du nanofluide, pour une et deux conditions thermiques convectives. Une m thodologie de diff rences finies pr cises a t trouv e appropri e pour la r solution du syst me math matique adimensionn , en utilisant le code Matlab. Les r sultats obtenus ont permis de mettre en vidence l influence de l effet de diff rents param tres de contr le, tels que le nombre de Darcy ????, le nombre de Forchheimer ????, le nombre de Hartmann ??, le param tre de couple contrainte ??, le nombre de Dufour ????, le nombre de Soret ????, le param tre de la r action chimique ??, le param tre de non-Boussinesq ??, le param tre de transfert de chaleur par convection ??, le param tre du mouvement Brownien ???? et le param tre de thermophor se ???? pour les nanofluide, sur les profils de vitesse, de la distribution de temp rature et de concentrations des esp ces et des nanoparticules, ainsi que les quantit s d int r t tel que la nombre de Nusselt et Sherwood
|